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Behavioral sensitization, defined as a progressive increase in the locomotor stimulant effects elicited by
repeated exposure to drugs of abuse, has been used as an animal model for drug craving in humans. The
mesoaccumbens dopaminergic system has been proposed to be critically involved in this phenomenon;
however, few studies have been designed to systematically investigate the effects of dopaminergic
antagonists on development and expression of behavioral sensitization to ethanol in Swiss mice. We first
tested the effects of D1 antagonist SCH-23390 (0–0.03 mg/kg) or D2 antagonist Sulpiride (0–30 mg/kg) on the
locomotor responses to an acute injection of ethanol (2.0 g/kg). Results showed that all tested doses of the
antagonists were effective in blocking ethanol's stimulant effects. In another set of experiments, mice were
pretreated intraperitoneally with SCH-23390 (0.01 mg/kg) or Sulpiride (10 mg/kg) 30 min before saline or
ethanol injection, for 21 days. Locomotor activity was measured weekly for 20 min. Four days following this
pretreatment, all mice were challengedwith ethanol. Both antagonists attenuated the development of ethanol
sensitization, but only SCH-23390 blocked the expression of ethanol sensitization according to this protocol.
When we tested a single dose (30 min before tests) of either antagonist in mice treated chronically with
ethanol, both antagonists attenuated ethanol-induced effects. The present findings demonstrate that the
concomitant administration of ethanol with D1 but not D2 antagonist prevented the expression of ethanol
sensitization, suggesting that the neuroadaptations underlying ethanol behavioral sensitization depend
preferentially on D1 receptor actions.
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1. Introduction

Behavioral sensitization is defined as a progressive enhancement
in the behavioral responses following repeated administration of
psychostimulants, opioids, ethanol and other drugs (Camarini et al.,
1995, 2008; Masur and Boerngen, 1980; Shuster et al., 1975, 1977;
Wallach and Gershon, 1971).

Sensitization is a long-lasting phenomenon accompanied by
cellular neuroadaptations that likely contribute to addictive behavior.
For this reason, it has been considered a useful animal model of drug
addiction.

Particularly for ethanol, behavioral sensitization has been linked to
uncontrolled intake of the substance of abuse (Hunt and Lands, 1992),
although the relationship between ethanol-induced sensitization and
ethanol intake is still uncertain. For instance, Frozino-Ribeiro et al.
(2008) found no difference in terms of ethanol-induced sensitization
among heavy and light drinker mice. Conversely, Borges et al. (2006)
found that mice classified as “high-sensitized” or “non-sensitized”
drank roughly the same amounts of ethanol. Ethanol sensitization is
observed especially following repeated administration of low doses of
the drug, since high doses induce tolerance rather than sensitization
(Masur and Boerngen, 1980).

Although many neurotransmitter systems have been implicated in
several behavioral effects of ethanol, the acute stimulant effects of this
drug involve mainly dopaminergic systems (Arias et al., 2010;
Broadbent et al., 1995; Cohen et al., 1997; Liljequist et al., 1981;
Pastor et al., 2005; Phillips and Shen, 1996). Both acute and repeated
administration of ethanol is well known to increase dopaminergic
neurotransmission in themesolimbic system (Di Chiara and Imperato,
1985; Nestby et al., 1997) accounting, at least in part, for the
reinforcing effects of this drug.

A number of neurochemical studies have focused on the
mechanisms responsible for behavioral sensitization to ethanol
(Bellot et al., 1996; Broadbent et al., 1995, 2005; Broadbent and
Harless, 1999; Camarini et al., 2000a,b; de Araujo et al., 2009; Gevaerd
and Takahashi, 1999; Itzhak and Martin, 2000; Phillips and Shen,
1996; Quadros et al., 2002; Souza-Formigoni et al., 1999;). However,
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few studies have examined the involvement of dopaminergic
antagonists in behavioral sensitization to ethanol (Broadbent et al.,
1995, 2005; Gevaerd and Takahashi, 1999), despite the prevalence of
alcoholism and the necessity of finding new treatment targets for the
development of novel pharmacological interventions for this
condition.

In a recent overview of the incentive sensitization theory of
addiction, Robinson and Berridge (2008) reaffirmed that drugs of
abuse share the ability to sensitize a common neural system, the
mesotelencephalic dopaminergic system, which sends projections
from the ventral tegmental area (VTA) to the nucleus accumbens
(NAc) and medial prefrontal cortex (mPFC). This system has been
extensively studied as a possible mediator of behavioral sensitization.

Repeated administration of psychostimulant drugs is supposed to
cause a long-lasting supersensitivity of postsynaptic D1 receptors in
the NAc, dopamine (DA) autoreceptor subsensitivity in the VTA and
enhancement of the DA release in the NAc (Henry and White, 1991;
Robinson et al., 1988; White and Wang, 1984). These functional
changes in the mesolimbic dopaminergic system have been found to
accompany behavioral sensitization. Moreover, it has been suggested
that the VTA is the site involved in the transient neuroadaptations that
occur during the development of this phenomenon,while the NAc and
mPFC have important roles in the persistent neuronal changes
underlying the expression of behavioral sensitization (for reviews,
see Pierce and Kalivas, 1997; Vanderschuren and Kalivas, 2000). These
and other neurochemical observations subjacent to sensitization have
led to pharmacological studies showing the efficacy of DA antagonists
in blocking behavioral sensitization to psychostimulant drugs
(Hamamura et al., 1991; Kuribara and Uchihashi, 1994; Reimer and
Martin-Iverson, 1994; Vezina and Stewart, 1989).

While the contribution of dopaminergic receptor subtypes in
ethanol-stimulated activity is well recognized, the extent to which DA
receptors are involved in mediating the development and expression
of sensitization to ethanol is not clear. Understanding themechanisms
involved in sensitization to ethanol may contribute toward under-
standing alcohol addiction and provide a foundation for further
pharmacotherapeutic strategies.

Hence, the objectives of this studywere to investigate the effects of
D1 (SCH-23390) and D2 (Sulpiride) dopaminergic receptor antago-
nists on the locomotor responses to acute ethanol and the effects of
these antagonists on the development and expression of behavioral
sensitization to ethanol.

2. Material and methods

2.1. Subjects

Three-month old Swiss male mice obtained from the UNIFESP
colony were housed in polypropylene cages (32×40×15 cm) in
groups of 10 or 15 per cage, with free access to food and water. The
colony room was maintained on a 12-h light–dark cycle (with lights
on at 7:00 AM) under controlled temperature. The experimental
procedures were carried out in accordance with the “International
Guiding Principles for Biomedical Research Involving Animals”
(Council of International Organization of Medical Sciences, Geneva,
1985).

2.2. Apparatus

The spontaneous locomotor activity of each animal was measured
in an open-field arena (40 cm in diameter) surrounded by a 50 cm-
high wall. A video camera installed 230 cm above the apparatus was
connected to a computer located outside of the experimental
chamber. Camera images were sent to the computer and horizontal
locomotion was quantified by EthoVision software (Noldus Informa-
tion Technology, The Netherlands) over the course of 20 min after
ethanol or saline injections.

2.3. Ethanol solution and drugs

Ethanol (Merck do Brasil S.A., Brazil) was administered as a 15% v/v
solution, diluted with 0.9% saline, at a dose of 2.0 g/kg intraperitoneally
(i.p.). The dose was chosen based on previous published studies from
our laboratory (Camarini et al., 1995; Bellot et al., 1996; Camarini et al.,
2000a,b; Camarini and Hodge, 2004; Araujo et al., 2005; Faria et al.,
2008).

The D1 receptor antagonist SCH-23390 (Schering-Plough S.A.,
Brazil) was dissolved in saline and injected i.p. The D2 receptor
antagonist Sulpiride (Sigma-Aldrich Brasil Ltda., Brazil) was first
dissolved in one drop of 1% glacial acetic acid and then the solution
was diluted with saline; Sulpiride was administered i.p. The injection
volume for SCH-23390 and Sulpiride was held at 0.1 mL/10 g. Doses
and route of administration were chosen according to previously
published studies (Cohen et al., 1997; Kuribara and Uchihashi, 1994;
Kuribara, 1995; Lê et al., 1997; Pastor et al., 2005). The doses chosen
for the chronic experiments were also based on the results from
Experiment 1, which were the intermediate doses without effect on
the activity in control animals.

2.4. Experimental procedures

The experiments were always conducted between 10:00 AM and
1:00 PM, approximately. In all experiments, mice were habituated in
the open-field on 2 days before starting the experiments, although the
data for the habituation sessions are not shownwith themain data for
Experiment 1 to avoid an excess of information in the figure.

2.4.1. Experiment 1: effects of single doses of D1 or D2 receptor
antagonists on the locomotor activity of mice acutely treated with
ethanol or saline

The effects of single doses of D1 antagonist (SCH-23390) on the
acute ethanol-induced locomotor activity were assessed by the
following schedule: the mice were treated with SCH-23390 (0.001,
0.003, 0.01 or 0.03 mg/kg) 30 min prior to the ethanol (2.0 g/kg) or
saline injection, and then the locomotor activity was assessed
immediately for a 20-min period.

The effects of single doses of D2 antagonist (Sulpiride) on the
ethanol-induced locomotor activity were investigated in a similar
manner, and the doses used were: 1.0, 3.0, 10.0 or 30.0 mg/kg.

2.4.2. Experiment 2: effects of D1 (SCH-23390) or D2 (Sulpiride) receptor
antagonists on the development of sensitization to the stimulant effect of
ethanol

SCH-23390 and Sulpiride doses were chosen based on the results
from Experiment 1.

Two days before initiating the experiment, mice were randomly
assigned to the groups and each animal received a saline injection for
the recording of locomotor activity over a period of 20 min. These
days were denominated “Habituation Days” and were designed to
minimize habituation across trials. Furthermore, this procedure was
intended to avoid a possible increase in DA activity induced by novelty
(Legault and Wise, 2001).

To examine the effects of the DA antagonists on the development
of behavioral sensitization to ethanol, mice were randomly assigned
to one of four groups: Saline/Saline (S/S), Saline/Ethanol (S/E),
Antagonist/Saline (A/S), and Antagonist/Ethanol (A/E). Each mouse
was first injected daily with saline or the antagonist (0.01 mg/kg SCH-
23390 or 10 mg/kg Sulpiride), 30 min prior to an injection of saline or
2.0 g/kg ethanol, for 21 days. Mice received the injections in the
environment where they were tested and were then returned to their
colony room. The locomotor activity was recorded for 20 min weekly,
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i.e., on treatment days 1, 7, 14 and 21, immediately after the second
injection. Mice received no treatment from days 22 to 24. DA
antagonists were removed 96 h before the test day to prevent any
residual effect of these drugs on the behavioral sensitization to
ethanol. On day 25, all mice were challenged with ethanol (2.0 g/kg)
and their locomotor activity was measured over 20 min. Each D1/D2

drug dose was tested in a separate group of mice.
2.4.3. Experiment 3: effects of single dose of D1 or D2 receptor
antagonists on the expression of sensitization to the stimulant effect of
ethanol

Initially, mice were injected daily with either saline or ethanol
(2.0 g/kg) over a period of 21 days. Following ethanol sensitization
and a 96-h drug-free interval, ethanol-pretreated and saline-pre-
treated mice were randomly sub-divided into 2 groups, which
received saline or SCH-23390 (0.01 mg/kg) 30 min prior to an ethanol
challenge injection (2.0 g/kg). The locomotor activity was assessed for
20 min immediately after the test injection.

The experimental design for Sulpiride (10 mg/kg) was the same as
that used for SCH-23390.
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2.4.4. Experiment 4: blood ethanol concentration (BEC)
Separate experiments were conducted to determine BEC using

identical procedures to those described in Experiments 2 and 3. Mice
were sacrificed by cervical dislocation at 20 min after the last ethanol
injection to assess possible effects of dopamine antagonists on the
pharmacokinetics of ethanol. The 20-min time point was chosen
because it corresponds to the end of the locomotor behavior test but
still falls within the peak of the locomotor stimulant effect of ethanol
(Meyer and Phillips, 2007).

Blood ethanol concentrations were determined according to a
modified method previously published (for details, see Yonamine
et al., 2003). Hamilton air-tight syringe was used to extract 0.25 mL
vapor aliquot (headspace procedure) prior to the gas chromatograph
run (6890, Agilent, Palo Alto, CA, USA) with a flame ionization
detector (GC-FID). The oven temperature was isothermal at 130 °C
and the injector port and detector were set at 250 °C. Separations
were performed on a Poraplot Q fused-silica capillary column
(10 m×0.32 mm; Varia, Midelburg, Netherlands). The retention
times for ethanol and n-butanol were 4.2 and 9.2 min, respectively.
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Fig. 1. Locomotor activity of mice treated with single doses of SCH-23390
(0–0.03 mg/kg; panel A) or Sulpiride (0–30 mg/kg; panel B), in combination with
saline or ethanol (2.0 g/kg). Mice received the dopaminergic antagonist or saline
30 min before ethanol or saline. Values are reported as distance traveled (cm)±SEM
(n=10 mice/group). *Differs from the respective saline group; +Differs from the
respective control group (saline or ethanol without the dopaminergic antagonist).
RM-ANOVA followed by post-hoc Newman–Keuls.
2.5. Statistical analysis

All data are expressed as mean±S.E.M. Statistical comparisons
were made by analysis of variance (ANOVA) or repeated measures
(RM) ANOVA (for within-group comparisons), followed by post-hoc
Newman–Keuls tests (Statistica, StatSoft, Tulsa, OK, USA). In Experi-
ments 1, 2 and 3 locomotor activity during habituation trials was
analyzed through RM-ANOVAs, with days as repeated measures. In
Experiment 1, the experimental design was a 2 (Saline or Ethanol)×5
(Saline or DA antagonist doses) between groups factorial. In
Experiment 2, the experimental design was a 2 (Saline or DA
antagonist)×2 (Saline or Ethanol)×4 (Days) factorial with days as a
within-subjects factor. The data from the ethanol challenge day were
analyzed through a 2 (Saline or DA antagonist)×2 (Saline or Ethanol).
A t-test for independent measures was used to compare the increase
in locomotor activity between two groups. Whenever necessary, the
loci of significant main effects or interactions were further examined
through follow-up ANOVAs. In Experiment 3, the experimental design
was a 2 (Saline or Ethanol)×2 (Saline or DA antagonist) between
groups factorial. In Experiment 4, BEC was analyzed through a 2
(Saline or DA antagonist)×2 (Saline or Ethanol) factorial. The level of
significance was set at pb0.05.
3. Results

3.1. Experiment 1: effects of single doses of D1 or D2 receptor antagonists
on the locomotor activity of mice acutely treated with ethanol or saline

Analysis of the data from the Habituation Days revealed a main
effect of habituation for the groups from SCH-23390 and Sulpiride
experiments [F(1,138)=296.18; pb0.01] and [F(1,138)=98.75;
pb0.01], respectively. The means±SEM for SCH-23390 saline group
in habituation days 1 and 2 were respectively: 3442.6±90.1 and
2246.5±78.6 cm and for SCH-23390 ethanol group in habituation
days 1 and 2 were respectively: 3426.5±91.4 and 2101.5±83.6 cm.
The means±SEM for Sulpiride saline group in habituation days 1 and
2 were respectively: 2999.3±112.6 and 2116.6±76.8 cm and for
Sulpiride ethanol group in habituation days 1 and 2were respectively:
2941.7±95.7 and 2116.6±75.4 cm.

The effects of different doses of SCH-23390 or Sulpiride on
ethanol-induced locomotor activation are shown in Fig. 1 (panels A
and B). The number of mice for each groupwas 10. A two-way ANOVA
revealed a main effect of SCH-23390 [F(6,126)=20.85; pb0.01], a
locomotor-stimulant effect of ethanol [F(1,126)=26.1; pb0.01] and
an interaction [F(6,126)=6.08; pb0.01]. Newman–Keuls post hoc
tests showed that mice given ethanol (2.0 g/kg) exhibited a
locomotor-stimulant effect compared to saline control. SCH-23390
reduced the ethanol-induced locomotor stimulation to levels similar
to those of the saline groups at all doses used, and only the highest
dose (0.03 mg/kg) decreased the activity in saline-treated mice.



176 R. Camarini et al. / Pharmacology, Biochemistry and Behavior 98 (2011) 173–180
A two-way ANOVA revealed a main effect of Sulpiride [F(6,126)=
16.3, pb0.01], a locomotor-stimulant effect of ethanol [F(1,126)=65.88,
pb0.01] and an interaction [F(6,126)=4.50; pb0.01]. Similar to the
results described above, ethanol produced a locomotor-stimulant effect.
Although all doses of Sulpiride reduced the ethanol-induced locomotor
stimulation, the doses of 5, 10 and 15 mg/kg decreased the locomotion
to levels similar to those of the saline group. The highest dose (30 mg/
kg) affected also activity levels in saline-treated mice.

3.2. Experiment 2: effects of D1 (SCH-23390) or D2 (Sulpiride) receptor
antagonists on the development of sensitization to the stimulant effect of
ethanol

The effects of SCH-23390 (panel A) and Sulpiride (panel B) on the
locomotor activity of mice repeatedly treated with saline or ethanol
are shown in Fig. 2.

The results of the SCH-23390 experiment are described in the
following discussion.

Analysis of the data from the Habituation Days revealed a main
effect of habituation [F(1,56)=118.00, pb0.01].

Analysis of the data from days 1, 7, 14 and 21 in a three-way
ANOVA demonstrated an effect of SCH-23390 [F(1,56)=68.73,
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Fig. 2. Locomotor activity of mice treated with saline or the dopaminergic antagonist SCH-233
for 21 days with weekly testing. The smaller bar graphs depict locomotor activity on day 25
traveled (cm)±SEM (n=15 mice/group). *Differs from the saline control (Saline/Saline);
with the antagonist; &HAB2bHAB1. Two-way ANOVA followed by post-hoc Newman–Keul
pb0.01]; a locomotor-stimulant effect of ethanol [F(1,56)=56.46,
pb0.01]; an effect of Days of treatment [F(3,168)=37.65, pb0.01], an
SCH-23390×Ethanol interaction [F(1,56)=221.85, pb0.01]; an
SCH-23390×Days interaction [F(3,168)=9.83, pb0.01]; and an
SCH-23390×Ethanol×Days interaction [F(3,168)=23.22, pb0.01].
Statistical analysis of the interaction revealed that mice repeatedly
treated with ethanol developed sensitization and that this was
attenuated by SCH-23390, since this D1 antagonist significantly
decreased the activity of ethanol-treated mice throughout the
treatment. The locomotor activity of mice treated with the combina-
tion of SCH-23390 plus ethanol also increased over treatment days;
however, this remained at levels below those of ethanol-treated mice
that did not receive the antagonist. The group repeatedly treated with
SCH-23390 plus saline also presented an increase in locomotor
activity over treatment, suggesting the development of dopaminergic
supersensitivity. Mice treated with SCH-23390 plus saline demon-
strated a higher increase in locomotor activity (215.75±41.03%)
when compared to the mice treated with SCH-23390 plus ethanol
(87.26±20.25%) (t=2.78, pb0.05).

Analysis of the data from day 25 (ethanol challenge day) revealed
a main effect of SCH-23390 [F(1,56)=16.94, pb0.01], a main effect of
ethanol [F(1,56)=5.62, pb0.01] and an interaction [F(1,56)=7.94,
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Fig. 3. Locomotor activity of mice pretreated with saline or ethanol (2.0 g/kg) for
21 days and tested on day 25 with saline or the antagonist SCH-23390 (panel A) or
Sulpiride (panel B), plus an ethanol (2.0 g/kg) challenge injection. The antagonist was
administered 30 min prior to ethanol injection. Values are reported as distance traveled
(cm)±SEM (n=8–10 mice/group). *Differs from the respective saline group; #Differs
from the respective group without the antagonist. ANOVA followed by post-hoc
Newman–Keuls.
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pb0.01]. Animals repeatedly treated with ethanol developed a
between-groups sensitization, since an acute ethanol administration
caused a greater locomotor response in ethanol-treated animals than
in saline-treated mice. Mice pretreated with the combination of SCH-
23390 and ethanol exhibited similar levels of locomotion to the
saline-treated mice and lower activity than ethanol-treated animals,
suggesting that co-administration of SCH-23390 with ethanol
prevented the expression of ethanol sensitization.

The results of the Sulpiride experiment are described in the
following discussion.

Analysis of the data from the Habituation Days revealed a main
effect of habituation [F(1,56)=35.69, pb0.01].

Analysis of the data from days 1, 7, 14 and 21 in a three-way
ANOVA demonstrated an effect of Sulpiride [F(1,56)=71.69, pb0.01];
a locomotor-stimulant effect of Ethanol [F(1,56)=78.66, pb0.01]; a
Sulpiride×Ethanol interaction [F(1,56)=33.99, pb0.01]; a Sulpiri-
de×Days interaction [F(3,168)=5.57, pb0.01] and an Ethanol×Days
interaction [F(3,168)=9.01, pb0.01]. Statistical analysis of the
Sulpiride×Ethanol interaction revealed that the D2 antagonist
reduced locomotor activity in both saline- and ethanol-treated mice.

In order to clarify the complex pattern of the interactions, the 3-
way ANOVA was deconstructed for the analysis of each group in a
separate, one-way ANOVA for repeated measures. Analysis of days 1
to 21 revealed a main effect of treatment days for the group
repeatedly treated with ethanol alone [F(3,42)=5.94, pb0.01],
indicating development of within-group sensitization to ethanol.
The locomotor activity of mice repeatedly treated with Sulpiride and
0 g/kg ethanol (i.e., saline) decreased throughout the treatment [F
(3,42)=4.25, pb0.05], showing a depressant effect of Sulpiride on
saline activity. The locomotor activity of mice treated with the
combination of Sulpiride and ethanol did not change across treatment
days [F(3,42)=0.22, pN0.05].

Analysis of the data from day 25 (ethanol challenge day) revealed
a locomotor-stimulant effect of Ethanol [F(1,56)=11.68, pb0.01], but
no Sulpiride effect [F(1,56)=1.78, pN0.05] and no Sulpiride×Ethanol
interaction [F(1,56)=0.59, pN0.05], suggesting that blockade of D2

receptors by Sulpiride was not effective in preventing the expression
of ethanol sensitization.
3.3. Experiment 3: effects of acute D1 (SCH-23390) and D2 (Sulpiride)
receptor antagonists on the expression of sensitization to the stimulant
effect of ethanol

Two mice from the “Ethanol–Saline/Ethanol” group died during
the procedures.

Analysis of the data from the Habituation Days in a two-way
ANOVA revealed a main effect of habituation for the groups in SCH-
23390 and Sulpiride experiments [F(1,38)=71.85, pb0.01] and [F
(1,38)=36.55, pb0.01], respectively. The means±SEM for SCH-
23390 saline group in habituation days 1 and 2 were respectively:
2989.3±158.6 and 2210.9±148.9 cm and for SCH-23390 ethanol
group in habituation days 1 and 2 were respectively: 3137.4±147.4
and 2120.5±137.8 cm. Themeans±SEM for Sulpiride saline group in
habituation days 1 and 2 were respectively: 2862.1±205.8 and
2079.9±159.5 cm and for Sulpiride ethanol group in habituation days
1 and 2 were respectively: 2910.3±195.2 and 2011.6±91.5 cm.

ANOVA revealed a locomotor-stimulant effect of Ethanol [F(1,38)=
12.45, pb0.01] and an effect of SCH-23390 [F(1,38)=25.21, pb0.01].
SCH-23390 reduced the locomotor activity in both acute and repeated
ethanol-treated mice (Fig. 3A).

The same statistical analysis was applied to the Sulpiride data and
also revealed a locomotor-stimulant effect of Ethanol [F(1,40)=
32.12, pb0.01] and an effect of Sulpiride [F(1,40)=14.31, pb0.01].
Sulpiride also reduced the locomotor activity in both acute and
repeated ethanol-treated mice (Fig. 3B).
3.4. Experiment 4: blood ethanol concentration (BEC)

Data of the BECs of the groups from Experiment 2 are shown in
Table 1.

Analysis of the BECs from the four groups (Saline/Saline; Saline/
Ethanol; SCH-23390/Saline, SCH-23390/Ethanol) after an ethanol
challenge (Experiment 2), showed no effect of SCH-23390 or ethanol
and no interaction between these two factors {[F(1,28)=0.206,
pN0.05], [F(1,28)=0.32, pN0.05], [F(1,28)=0.38, pN0.05], respective-
ly}. Similar results were found in the experiment with Sulpiride. Blood
ethanol levels were similar in all groups (Saline/Saline; Saline/Ethanol;
Sulpiride/Saline; Sulpiride/Ethanol) at 20 min after ethanol challenge.
ANOVA showed no effect of Sulpiride or ethanol and no interaction
between these two factors {[F(1,28)=0.01, pN0.05], [F(1,28)=0.07,
pN0.05], [F(1,28)=0.03, pN0.05], respectively}.

Data of the BECs of the groups from Experiment 3 are shown in
Table 1. ANOVA showed no effect of ethanol or SCH-23390 and no
interaction between these two factors {[F(1,28)=1.84, pN0.05],
[F(1,28)=1.14, pN0.05], [F(1,28)=2.66, pN0.05], respectively}.
Similar results were found in the experiment with Sulpiride
{[F(1,28)=1.05, pN0.05], [F(1,28)=1.08, pN0.05], [F(1,28)=0.03,
pN0.05], respectively}.

These results suggest that the pharmacokinetics of ethanol were
not altered by the administration of D1 or D2 antagonists at 20 min
after an ethanol challenge. The data revealed that there were no
effects of SCH-23390 or Sulpiride on BECs when the antagonists were
co-administered during the development of behavioral sensitization
or after sensitization had developed.



Table 1
Blood ethanol concentration (BEC) 20 min following an injection of 2.0 g/kg ethanol.

Experiment Groups BEC

Experiment 2 Saline/Saline 2.43±0.19
Saline/Ethanol 2.44±0.16
SCH-23390/Saline 2.46±0.17
SCH-23390/Ethanol 2.25±0.18
Saline/Saline 2.52±0.22
Saline/Ethanol 2.44±0.18
Sulpiride/Saline 2.47±0.13
Sulpiride/Ethanol 2.46±0.12

Experiment 3 Saline–Saline/Ethanol 2.14±0.09
Ethanol–Saline/Ethanol 2.12±0.07
Saline–SCH-23390/Ethanol 2.10±0.04
Ethanol–SCH-23390/Ethanol 2.34±0.11
Saline–Saline/Ethanol 2.60±0.15
Ethanol–Saline/Ethanol 2.46±0.16
Saline–Sulpiride/Ethanol 2.46±0.25
Ethanol–Sulpiride/Ethanol 2.24±0.15

BEC data (expressed in g/L) are shown as mean±SEM of each treatment group (n=8
per group). The experiments were the same as described in Figs. 2 and 3 (Experiments 2
and 3, respectively). In Experiment 2, blood ethanol levels were similar in all groups
(Saline/Saline; Saline/Ethanol; Antagonist/Saline; Antagonist/Ethanol) at 20 min after
ethanol challenge. In Experiment 3, no differences were found among groups
(Saline–Saline/Ethanol; Ethanol–Saline/Ethanol; Saline–Antagonist/Ethanol;
Ethanol–Antagonist/Ethanol). Two-way ANOVA followed by post-hoc Newman–Keuls.

178 R. Camarini et al. / Pharmacology, Biochemistry and Behavior 98 (2011) 173–180
4. Discussion

The present study shows the effects of D1 (SCH-23390) and D2

(Sulpiride) antagonists on the development and expression of
sensitization to ethanol as well as on the stimulant effect of a single
injection of ethanol at 2.0 g/kg.

Our results confirmed the previously reported stimulant effect of
ethanol at a dose of 2.0 g/kg in Swiss mice (Camarini et al., 1995,
2000a,b; Masur and Boerngen, 1980) and also the reliable attenuating
effects of SCH-23390 or Sulpiride on the locomotor-activating effects
of ethanol (Arias et al., 2010; Cohen et al., 1997; Liljequist et al., 1981;
Pastor et al., 2005; Phillips and Shen, 1996). However, there have also
been reports of a lack of effect in mice (Boyce and Risinger, 2002;
Gevaerd and Takahashi, 1999; Pastor et al., 2005; Scibelli and Phillips,
2009). This discrepancy in the literature may be explained by the fact
that neurochemical mediators responsible for the ethanol-induced
stimulation vary as a function of species, strain, dose, time of
measurement of locomotor activity and also novelty to test procedure.
Indeed, in the study by Pastor et al. (2005) Sulpiride blocked ethanol-
induced stimulation only in mice not previously habituated to the test
environment. Consequently, all these factors should be carefully
considered in future studies.

The stimulant effects of ethanol are known to be mediated by the
mesolimbic dopaminergic system through an increase in DA release in
the NAc (Di Chiara and Imperato, 1985) and it is expected that DA
receptors have an important role in the mechanisms underlying this
effect. On the other hand, ethanol's dose-dependent effects involve
several different neurotransmitters in the brain. It is well known that
low doses of ethanol stimulate dopaminergic activity and reduce
GABA turnover (Di Chiara and Imperato, 1985; Hunt and Majchro-
wicz, 1983). Ethanol facilitates DA release in the NAc by enhancing the
firing rate of dopaminergic neurons in the VTA (Bunney et al., 2001;
Gessa et al., 1985). It is hypothesized that this effect is mediated by
ethanol stimulation of GABAA receptors in the VTA and that the
blockade of D1 receptors by SCH-23390 influences the response of
GABA neurotransmission to ethanol on dopaminergic neurons. In fact,
neuropharmacological manipulations with GABAB agonists (Quinta-
nilla et al., 2008; Shen et al., 1998) or opioid antagonists (Camarini
et al., 2000b; Pastor and Aragon, 2006) inhibit ethanol-induced
stimulation, probably through an action upon dopaminergic neurons
(Arias et al., 2009).
In the present study, blockade of D2 receptors also reduced
ethanol-induced stimulation, which is an interesting finding because
the role of D2 receptors in the locomotor-stimulating effects of ethanol
has been debated. Although our results are in agreement with other
reports (Cohen et al., 1997; Koechling and Amit, 1993), an elegant
study by Pastor et al. (2005) showed that ethanol-induced stimulation
can occur independently of D2 receptors once the animals have been
habituated to the environment. A possible explanation for the
differences between our results and those of Pastor et al. is the higher
number of habituation sessions in their study.

One striking result of this study is the up-regulation of D1 receptors
suggested by the increase in the locomotor activity of saline-treated
mice following repeated daily injections of D1 antagonist. Since the
locomotor activity of mice treated with the combination of SCH-
23390 and ethanol also increased across treatment days it is likely
that the increased density of D1 receptors caused the ethanol
stimulant effect to emerge, although at a lower magnitude than that
in the group treated with ethanol without the antagonist. More to the
point, co-administration of D1 antagonist with ethanol did not result
in locomotor sensitization following 96 h of antagonist withdrawal,
showing that the D1 antagonist attenuated the development of
ethanol sensitization and blocked the expression of this phenomenon.

Studies with radioligand binding assays have demonstrated a
selective increase in D1 receptors after chronic treatment with SCH-
23390 (Giorgi et al., 1993; Hess et al., 1988). In the present
investigation this effect was manifested through an increase in
locomotor activity, as has been previously demonstrated in rats
(Maldonado et al., 1990), probably in response to endogenous DA,
what may be a result of some degree of stress or novelty. Following
96 h of antagonist withdrawal, the dopaminergic supersensitivity was
normalized, since we found similar activity levels in the group treated
repeatedly with SCH-23390 and the saline control group, after a
challenge injection of ethanol. Thus, we assumed that there was no
residual effect of SCH-23390 on the challenge day.

By contrast with the D1 antagonist results, repeated Sulpiride
treatment did not prevent the expression of behavioral sensitization
to ethanol, albeit attenuating both the stimulant effect of ethanol and
the development of ethanol sensitization (Experiment 2). Although
an acute Sulpiride injection reduced the activity of mice chronically
treated with ethanol (Experiment 3), this result seems to reflect a
potent depressant effect of Sulpiride over ethanol-induced stimula-
tion rather than an effect on the neuroadaptations underlying
sensitization. Taken together, these pieces of evidence regarding the
blockade of ethanol-induced stimulation appear not to imply the
inhibition of expression of sensitization, indicating that ethanol's
stimulant effect and the expression of ethanol sensitization occur
through different neuronal mechanisms, as has been previously
suggested (Broadbent et al., 1995; Phillips et al., 1995). In fact,
although a negative correlation between D2 binding and the ethanol
stimulant response has been described, no association was found
between D2 binding and sensitization to ethanol in the shell of the
NAc in mice (Hitzemann et al., 2003; Phillips et al., 1995).

Broadbent et al. (1995)usedhaloperidol as aD2 receptor blocker and
reported that this drug was able to abolish the acute locomotor
responses to ethanol, but failed to prevent the development of
sensitization, which is in agreement with the results of the present
study using a more selective D2 antagonist. In a similar context,
haloperidol produced a dose-dependent decrease in ethanol-induced
locomotor activity, but did not affect ethanol-induced conditioned place
preference (Cunningham et al., 1992; Risinger et al., 1992), which
reinforces the hypothesis of differential effects of D2 antagonism across
different models for assessing ethanol's hedonic effects. Although our
findings and the study by Broadbent et al. (1995) obtained similar
results, additional research will be required to elucidate the role of D2

sensitization in the development of sensitization to ethanol. These
findings appear to reduce the importance of D2 receptors in the



179R. Camarini et al. / Pharmacology, Biochemistry and Behavior 98 (2011) 173–180
sensitizing effects of stimulating doses of ethanol, but do not completely
rule out a possible role of D2 for this phenomenon. Alterations in DA
receptors, mainly the D2 subtype, have been associated with ethanol
behavioral sensitization. For example, mice sensitized to the stimulant
effects of ethanol hadhigher levels of D2 binding in the anterior caudate-
putamen nucleus and reduced levels of D2 binding in the olfactory
tubercule compared to non-sensitized mice (de Araujo et al., 2009;
Souza-Formigoni et al., 1999).

The present results also demonstrated that repeated administration
of Sulpiride progressively decreased the locomotor activity of mice
throughout the treatment as compared to day 1 (Experiment 1). In
previous work Sulpiride was found to induce supersensitivity of D2

receptors since withdrawal from long-term Sulpiride administration
increased the locomotor activity in rats (Frussa-Filho andPalermo-Neto,
1990). However, this effect appears to be dependent on the dose, since
striatal D2 receptor desensitization has already been reported after
repeated administration of low doses of Sulpiride, due to preferential
blockade of D2 autoreceptors and a consequent increase in DA release
(Sigala et al., 1991). This effect is supposed to reduce the sensitivity to
drugs of abuse, which has been described, for example, by Kuribara
(1996), who demonstrated that Sulpiride inhibited methamphetamine
sensitization at low doses, but not at high doses. Conversely, at high
doses Sulpiride produced supersensitivity of D2 receptors and increased
the sensitivity to the psychostimulant drug (Kuribara, 1996). Thus,
dopaminergic inhibitory modulation acting through D2 receptors may
exert a differential influence upon the neural mechanisms involved in
the drug-stimulant effects and locomotor behavioral sensitization. It has
beenshown, for example, that Sulpiride i.p. hasnoeffectupon cocaineor
apomorphine-induced sensitization (Mattingly et al., 1991, 1994),while
infusion of Sulpiride into the mPFC enhances the locomotor-stimulant
effect of cocaine (Steketee, 2005).

Using an experimental design similar to those of several other
studies (Camarini et al., 2000a,b; Harrison and Nobrega, 2009;
Heidbreder et al., 1996; Martin-Iverson and Reimer, 1994; Tella,
1994), we found that an acute injection of either D1 or D2 antagonists
attenuated the expression of sensitization in ethanol-sensitized mice.
An issue of some concern in the interpretation of these results was the
observation that D1 and D2 antagonists have a depressant effect upon
ethanol-induced stimulation and, thus, it would not be clear whether
the antagonists were blocking ethanol's acute effects or disrupting the
neuralmechanisms of ethanol sensitization. Indeed, D2 blockade did not
block the expression of ethanol sensitization once it had been induced.

In conclusion, we can suggest that D2 blockade reduces the acute
locomotor stimulant effect of ethanol but does not interfere with the
long-term neuroadaptive changes underlying the expression of
ethanol sensitization. The current study supports other reports
(Broadbent et al., 1995; Phillips et al., 1995) of a dissociation between
the mechanisms underlying the stimulant effects of ethanol and
behavioral sensitization. Furthermore, we extend this finding to
suggest that D1 receptors, in particular, are an important component
of the neural substrates that provide the basis for the development
and expression of behavioral sensitization to ethanol.
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